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RELATIVISTIC ELECTRON BEAM TRACKING STUDIES

I. Introduction

Computational models that are linearized about an axisymmetric equilibrium
have proven invaluable in the study of instabilities of propagating beams. For

1 as well as

example, linearized (monopole/dipole) particle simulation codes
linearized codes with simplified models of beam dynamic32 have been used for hose
instability analysis. However there are other areas of beam propagation
phenomenology in which large departure from axisymmetry are essential and
inevitable, and in which such linearized models can be quite misleading. For
example, in the presence of transverse external magnetic or electric fields,
different "slices” of the beam (defined by the distance 7 from the beam head) may
be subject to different accelerations F/(my), where F is the force and y, which
may be a function of 7, is the relativistic factor. In such situations, the beam
may tear apart, or alternatively it may reach a non—ax;symmetric equilibrium in
which its cohesive self-forces counterbalance the sheared external forces. As
another example, we have recently shown that there are important situations in
which the beam head is in a grossly unstable equilibrium (unstable to simple
zero—frequency transverse displacements) when it is propagating on-axis in a
density or conductivity channel, but in which another and more stable equilibrium
exists with the beam head off-axis by a prescribed amount. Thus axisymmetry is
broken and the beam tends to track the channel by riding down the channel walls,
rather than the channel center. Moreover, the equilibrium displacement from the
channel axis increases from the head of the beam to its tail, increasing the
departure from axisymmetry.

To treat problems such as these, it is necessary to develop a fully three-

dimensional solution of the electromagnetic field equations; monopole/dipole

Manuscript approved May 25, 1983,
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approximations will not do. In dealing with very highly relativistic paraxial
beams we shall assume, however, that it is sufficient to solve the three-

dimensional form of Lee”s reduced field equations3

, rather then the complete
Maxwell equations. This paper deals mainly with the numerical methods which we
have developed to solve the field equations. To date, we have only addressed the
problem of determining non-axisymmetric beam equilibria, in which the beam is
specified by a prescribed density profile nb(g-g(;), z;).4 Each slice of the beam
is allowed transverse (non-infinitesimal) displacement Y(z), but is not allowed
to distort. No particle dynamics and no time dependences have been studied, to
date. Eventually we shall have to study the stability of these equilibria to
internal distortions and to dynamic modes such as hose, but this can only be done
after the correct equilibria have been determined, a task which is by no means
trivial either computationally, mathematically or physical;y.

We have already discussed the code Dynasty-I, which was developed as our
first cut to study the interaction between the beam and the channel. It solves
the full set of Lee field equations without linearization. The radial dependence
is solved by finite difference with nonuniform grids. The theta dependence 1is
solved by fast Fourier transform. The advantage of this method is that the theta
derivatives are more than second order accurates- Unfortunately, Dynasty-I is

severely time step limited because it uses an explicit scheme. This can be seen

from the following: the Lee field equations are

3A 2

— -+ -+
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where n = o-l. Both n and ¢ behave like diffusion coefficients in the
equations. Near the head of the beam n is very large, but near the tail ¢ is
very large. The difference can éasily be three orders of magnitude. So any
explicit scheme that takes care of the solution at one end will have severe time
step limitations at the other end.

Recently we have developed a new code called Dynasty II. It is similar to
Dynasty I except it solves the field equations implicitly and so the time step
limitation is removed. This code involves the solution of a bi-tridiagonal
gystem with complex matrix coefficients. The complexity in calculation is offset
by the fact that for the first time, one is able to find the self comsistent
flelds and the force acting on the beam from head to tail for arbitrary beam
displacement.

We will not present the physics results investigated by Dynasty II here;
they will be reported in later publications. Instead, we shall concentrate on
the numerical formulation of the code. In section II, we review briefly the
convolution sum, and in Sec. III we apply it to a simple diffusion equation. 1In
Sec. IV, the method of solving the field equations is described. 1In Sec. V, we

discuss some applications.
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II. Review of Convolution Codigg

Let A(9) and B(8) be two functions that depend on 5. The expansion of the

product of A and B in a finite Fourier series is

N N
- -1
A(B) B(8) = | A e 118 ] B2 wo
2==N m=-N
N
-7 7 a B etxtmwe -
L o :
1==-N m=-N
Let n = ¢ + m, then (1) becomes
N m+N
. AB = ¥ T A e 108, (2)
F! go=-N npsp-N O O
3

N

We want to convert (2) to a form like 2 ()e ine. Breaking the double sum to
a=-N

two sums and interchanging the direction of integration, we obtain

0 n+N 2N N ~1ne
AB =[] ¥ + 0 7 A B e . (3)
{' n==2N mZ-N] n=0 mzn-N]} oo

Equation (3) can be approximated by dropping the higher order modes, i.e. we

2N N
replace by J . This can be justified, provided that the magnitude of a
n==2N n==N

transform goes down rapidly with higher mode number. Equation (3) becomes

0 n+N N N
a8 ~{[ I I 1+ 1 T Jta_ s

n==N m=-N n=0 m=n-N

e-ine.

(4)

PO R P s a'a s A L A A aam ‘A e el PUPRPY WP a A

2

.l
0
R

.
K
-

,

-




TRt T LT TwTTw P I . AL . . D A
.................... R - - ° o °

i III. Implicit Formulation of a Diffusion Equation by the Transform Method

The RHS of a diffusion equation,
JA ,
T (r,8) = n{r,8) L[A(r,8)] (5

with L = Vlz, can be expressed as

0 n#N N N

B -1
: mis = {[ I I J+[ I 1 ]} e (6)
7’ n=-N m=—N n=0 m=n=-N
N -in6
N In matrix form, (6) becomes (dropping e )
no(LA)_N + ¢ o + n_N(LA)° + 0

L4 ® [ ] L]

[ [ [} L4
§ L] ) ° L

mg(LA) oy F ny (LAY gy % o e o (LA) 4 o o o 4 n_(LA) (7)
\ [ ] [ ]

& ~ ° .
- ™~ ® * 4
- 0 =
: LA, + e e (LAY ]
i A typical (T..A)m term can be expanded to :q
(uay = (12 - mz) A (r) (8) 7
. m r 3r = ar ':7 m /" A
:k Using a nonuniform grid in radial direction, i.e. using uniform spacing in y,
- where




A

-_' 2 _

. y =r,

i 2ydy = dr, hs

: S

EZ we can rewrite (8) as 51:

- —i i

» _‘"1
= (rly o2 (9)

In finite different form, (9) is

(LAY, = aAiiy o’ Binde " V1 A-1m (10)
where
32
- (Lt “‘2) (12)
8im 2 2;7 4/
£ ¥y
y
1-1/2
4 ¥y A
=@,
3 RS R a® |
L Substitute (10) in (7), we obtain for the first row
_ @
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oy (oA o Y 81,000 T 1A, 0)

= Cli(nos n_l b hd d n_N) A_N + (nOBi,—N’ n_lsi’N+1 . * ° n_NBi’o) A_N
A A
N+ o N1
® ®
[ ] [ ]
A, A
1+1 ° 1
+ Yi(“o o o e n_N) Ay

A

SN+

[ ]

[ ]

AO

i-1
(15)

Similarly we can rewrite all the rows in (7) in a form such as (15).

Consequently, the RHS of (5) can be expressed

Ri Ai+1+ Si Ai + Ti Ai-l (16)

where Ai+1’ Ai, Ai-l are column matrices with the first element equal to ALy and

the last element equal to Ay, and ii’ S., T, are banded matrices with

i* i

Sy = ny Bp» (18)
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and ;1 and ;i are diagonal matrices with their elements equal to ay and

Yy respectively. Ei is also a diagonal matrix, but each element is different

i.e.
By N 0
~
g, = >
1 B0 _ . (20)
~
0 T OBy
L >

Going back to (5), we finally obtain

ol en _ S [s ntl 3 entl | = -ntl
A TA 3 [Ri A TS5 4 +T Ai-l]
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3 = T
1+1 + Si Ai+ Ti Ai-l} s (21)

§ = ¢ -z (22)

The scheme described in (21) is similar to a Crank-Nicholson method and
is 0(5)2 and O(A)z. Now we are ready to tackle the Lee field equations, as

discussed in the next section.
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IV. Implicit Formulation of the Lee Field Equations by Fourier Transform

We can cast Lee”s field equations3 in to the following form:

A _ 2

i vl (A+ ¢) +n Jb (23)
2 A _ . 2

Vl ‘a—c- (Vo) (V¢) + 0 Vl $ (24)

where n = ¢ "+ Our aim here is to reduce (23) and (24) to a bi-tridiagonal

system. The conductivity equation in normalized unit is

30 2
32 KlJb + vy © Kz po,

where

Kl = 1.4653

K, = 1.7 x 107°

2

APS3

]
11 +Bs +cs? + ps3

s = £2/p2,

>
]

1.423 x 1074,

9.179 x 1078,

=}
[}

2.656 x 10710,

aQ
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D = 2.820 x 10”7,

E and P are the local electric field #nd pressure respectively. The equation for
g or n is not solved implicitly because it includes nonlinear terms due to

avalanche and recombination, but we can always time-center the g equation to

ensure accuracy to 0(6)2. For simplicity, let us define

_ 90
a = a—r (25)
w . ag
g = —ae (26)

(24) can be rewritten as

Vz.aﬁa c-’i‘t-}-

N 3 LA (27)

a6

tho:

We shall now transform (23) and (27) term by term. From (23), we have

B o 2
nv,a =g AL + 5, A T
+3 RAL S T 5 ), (29)
and
0Ty 8 =g Ran + 5 5 T

11




l = =-n a-h =
* 3[Ry 04y * S0 +Ty0y ] (30)
a+l/2
The term (n Jb) is calculated explicitly. From (27), we have
2 3A _ ol 7o+l _ = cobl | = ol
Vigz = 8 {lagApyy v BAT FvA]
- - - -n, - -n
[og Ay + B4 + A ] (L)

. -1 =" - - +1, - -
o 2= By, Ty [y 8T F (B "] (32)

and

e 2 I <= .
2 38 ° 7o Lo+l (33)
T 2yi

- 1
where 1 = (—1)1'2 to avoid confusion with index i. Also

2 l (7 =n+l | 27 -n+l, =7 -ntl
o7 65 [Ry by ¥ 0y + Ty 6]
1 " - = =n_ =" -n
5 [Ry bt S e+ T 6] (34)

- -
-

i si

In the above, m is a diagonal matrix with element runs from =N to N, and R

and Ti are defined in (17)-(19) with ;i replaced by P Putting (28)-(30) in

i.
(23) and (31)-(34) in (27), we get the desired bi-tridiagonal form:

(1) = (2) = (L) ¢ 2) = (2) = _ (1)
3 T A tar T gt by T AL T ge1 F e Ty

(1) +
117 34 teg T A

i

(35)
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R 1 i
ag - -, (373

s (2 i
. ay ) .- - (38)
o (3) _ - ]
=Y, (39) -
f! ag g ( q
h wy S5 o 1
I S A (49

k8
8.

- 1) = i B
- b - T -4, (41) 3
53 B
2 i .
SRS E
6P =5, w3 §
)
(4y_Is - _ 88 ~
DRCE S § (44) '1
2 s
1
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system is given in the appendix.

We use conducting boundary conditions at the outer boundary i.e.

- - .."

‘1 L7 A (48) ;

68 5T -

Q)_ 8z , n 1 i n .

d Tm g R A (T ) A A
$ (R, o, nLT n n+l/2

+3 (Rydyq+ Sy & + Ty o) + (n3y) 8, (49) ]

'®

s §9, R 1

: G At B ALY AL By T T e ;

. P P . ﬁ

1§ =" = iy -n i _ 71, -n .

' - (—4 ci o 2 ) ¢1 (8y A —'2—) ¢1_1’ (50) ]
2

EF: where I is an unit diagonal matrix. The inversion method of the bi-tridiagonal

x|
P.'_l

A a4

A (R) =0,

(51)
¢m(R) = 0,

for all m. Near the origin, we require both the electric and magnetic fields be

finite and continuous. Noting that for small r,

(), oy(r) =2, (52) ~
we have at once
2
Am(O) = (0= ¢m(0), form > 1, (53) _4'_
B
3(0) 36,(0) s
3T = () = T R for m = 0. (54) :




v. Applications

To date, Dynasty II has been used only to calculate beam equilibria, using a
simple envelope model of the beam. The beam current density is specified to be

of the form

le - ()|
Jb(fsC) = f = I

where f is a specified radial profile shape (usually Bennett), a(g) is the beam
radius, and Y(z) is the transverse displacement of the slice. In most cases, we
have specified a(z) and used the code, iterating back in g from the beam head, to
calculate the equilibrium value of Y(z). We have already mentioned briefly some
applications of the code in Sec. I. We shall elaborate on these areas in some
detail here.

Previous work6 has shown that in the electrostatic regime at the beam head
if the beam radius ry is smaller than the conductivity channel r., the beam is
attracted towards the channel axis. On the other hand, if Ty > T, as is usually
true in the beam head, we have shown that when the beam resides om the channel
axis, each slice will see an average force repelling it from the channel. But in
the electrostatic regime, if the beam is displaced sufficiently from the channel
it should see an electric dipole attracting it back toward the channel. Using
Dynasty II to study this problem, we found that when the beam displacement is of
the order of the beam radius and r, > T, a stable equilibrium exists with the
beam off axis, i.e. Y # 0. The equilibrium displacement from the channel axis
increases from the head of the beam to its tail. A detailed description of these
results will be presented in 2 later report.

When an external electric or magnetic force F acts on the beam, each beam

slice will be subject to a different acceleration F/my if y is a function of gz.
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I1f the shear in F(z)/my(z) 1s strong compared to the restoring force due to the ]

beam”“s self-pinch, the beam will tear. The break-up will continue along ¢ until

: o
] for some value %o the restoring force becomes stronger than the sheared external -ﬂ
force; from this point on, i.e. ¢z > Zes the beam will hold together. Once the
“"guiding point” Ze is determined, we can find (a) the deflection due to the  force .

-4
~@)

. F, (b) what portion of the beam is torn out, and (c) the value of y(;c), i.e.,

the energy of that part of the beam actually guides the rest of the beam.

1f Y(;c) differs substantially from y(z = 0), then a problem may occur in aiming

the beam subject to the influence of this external force. This work is still in

AR ST

progress and the results will be reported in a later report.
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Appendix
The algorithm for inverting a bi-triagonal system with scalar coefficients
is well known.7 We shall generalize it to include matrix coefficients. The
equations are

a(l)u + a(z)v 1+ bil)u “+ b(z) (l)u + c(z)v

Y
i i-1 i i- i 1 €4 i+1 i i+l i

and

v

(3 (4) 3) (4) (3) (4) - 4(1)
3 Ay TVt by ey by vk e T ey Yt 4

',:". o 3
sy PRSI

for 1 < 1 < R, with aim)- cR(m)- O for 1 < m < 4.

.

Ao - g

The algorithm is as follows:

First compute

g{1)a p(1) (1) A1) L ,(2),(3)
1 i Mol T A ALy

(2), (2)_ (1) (2) (2) (4)
By "% by Afa1™ 3 Ay

(3) (3)_ (3, (L)_ (&) (D
By = byTm A TN LT A TN

g{¥a p(8)_ L(3),(2)_ (4),(4)
1 173 MaT A MNop

(m)for1<m<a

with e(“)- by
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and

(L), J(L)_ (L) _(L)_ _(2)_(2)
§y "= dy Ay iy Ay TYylp

(2)_, (2)_ _(3)_(L)_ (&) _(2)
61 di a ay

1 Yi-1 Yi-1° 1
"
with 5§1)- d{l) and 5{2), d§2), and 1
-1 -1 ~
(L) (27 (1) ()7 () ’i
w e e - e e, g
). (@ 7w f
-1 -1 -1 .
1 1 2 1 4 3 -
N (S S S y
-1 -1 -1 .
2 1 2 2 4 4
RO I RN O RO RN |
-1 -1 -1 .
3 2 1 1 3 3 ’
D770 7, .
1 1 1 tq
4 2)" (2 3" (4 .
*f ). “f ) (Bi ) °§ )_ Bf ) °§ ), -
-1 -1 -1
1 1 2 1 4 2 -
e T (@D @7, "
-1 -1 -1
2 2 1 1 3 2
N ] "
1
]
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